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Abstract

In this paper we present a new result concerning
the Failure Detection and IdentiÞcation problem as
a straightforward interpretation of the dual prob-
lem: the input-output disturbance rejection problem.
This result leads in a natural and simple way to the
classical result of Massoumia.

1 Introduction

The problem of failure detection and identiÞcation
is always present when dealing with modern techno-
logical systems in order to satisfy increasingly strin-
gent safety and environmental regulations Monitor-
ing pursuits the minimization of risk, which is in fact
unavoidable. Failures in actuators, sensors and com-
ponents are normal sources of risk in technological
systems and because of this fault detection, identi-
Þcation and isolation systems are common in moni-
toring processes. When monitored technological sys-
tems are described in terms of integral-differential
equations, model based fault detection and isolation
can be achieved (see [6]). These techniques mini-
mizes the complexity of sensors systems, which are
necessary in order to reduce the associated cost.

The problem of fault detection and identiÞca-
tion in dynamical systems consist in the generation
of signals sensitive to the generation of some partic-
ular faults. We tackle here the deterministic time
invariant linear case concerning the residual genera-
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tion (full order observers involved). Massoumia ([2],
[4] and [3]) uses the so-called Beard and Jones Þlter
to give geometric conditions to solve the problem of
residual generation. In this paper we will serve us of
classical results on the disturbance rejection by state
feedback and the dual case, as stated in [1], in order
to obtain a simple solution to a new verion of the so
called Fundamental Problem of Residual Generation.
Then, in a natural way, the result of Massoumia [4]
is obtained.

The paper is organized as follows. In Section
2 we introduce the notation and recall the deÞnition
of some useful invariant subspaces. Section 3 is ded-
icated to recall the disturbance rejection problem by
(static) state feedback and the dual case. In Section4
We present our contribution: geometric conditions
for the existence of a solution to the Fault Detection
and Isolation problem. In Section 5 two illustrative
examples are presented and Þnally, in Section 6 some
concluding remarks are given.

2 Preliminaries: some useful
subspaces

Consider a linear time-invariant system (A, B, C)
described by:½

úx (t) = Ax (t) +Bu (t) ,
y (t) = Cx (t) ,

(1)

where: x (t) ∈ X ' Rn denotes the state; u (t) ∈
U ' Rm denotes the input, and y (t) ∈ Y ' Rp the
output. It is considered here that A : X → X , B :
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U → X , and C : X → Y, are linear maps represented
by real constant matrices.

Consider a subspace K ⊆ X be given. The
notation:

� V(K) indicates that the subspace V(K) is (A,
K)-invariant,i.e., AV(K)⊆ V(K) + K. We note

F ¡V(K)

¢
the family of maps F : X → U (state

feedbacks) such that (A+BF )V(K)⊆ V(K).

� S(K) indicates that the subspace S(K)is (K, A)-
invariant,i.e., A

¡K ∩ S(K)

¢ ⊆ S(K). We note

D ¡S(K)

¢
the family of maps G : Y → X (output

injections) such that (A+GC)S(K)⊆ S(K).

We say that R(ImB) is an (A, ImB) con-
trollability subspace if there exists a couple of
maps F : X → U and θ : U → U
such that the subspace R(ImB) satisÞes R(ImB) =
hA+BF | Im(Bθ)i := Im(Bθ) + (A+BF ) Im (Bθ)
+ · · · + (A+BF )n−1 Im(Bθ).

We say that N(KerC) is (kerC, A)-
complementary observability (or simply
(kerC,A)-unobservability) subspace if there
exists a couple of maps D : Y → X and
H : Y → Y such that the subspace N(KerC)

satisÞes N(KerC) = hKer (HC) | A+DCi :=

Ker(HC) ∩ (A+DC)
−1Ker(HC) ∩ · · · ∩

(A+DC)−n+1Ker(HC).

Given two subspaces K and L ⊆ X , we shall
note (see [7, Wonham, 1985] and [1, Basile and
Marro, 1992]):

� V∗(K,L) :=the supremal (A,K)-invariant sub-
space (V(K))contained in L;

� S∗(L,K) :=the inÞmal (L,A)-invariant subspace
(S(L)) containing K;

� R∗(K,L) := the supremal (A,K)-controllability
subspace (R(K)) contained in L (R∗

(K,L) =

V∗(K,L) ∩ S∗(L,K));

� N ∗
(L,K) :=the inÞmal (L,A)-unobservability

subspace N(L) containing K (N ∗
(L,K) = V∗(K,L) +

S∗(L,K)).

σ (FL | L/M) denotes the spectrum of the
map induced by (A + BFL) in the quotient space
L
M , whereM ⊂ L and both are (A,B)-inv.sps. The
spectrum of (A+BFV) can be decomposed (in con-
nection with the (A,B)-inv.sp. V) into Þxed and free

parts (see [5]). The Þxed part (called the Þxed spec-
trum of V) is given by:

σfix(V) : = σ (FV | X/hA | Bi+V)
ú∪ σ

³
FV | V/R∗(B,V)

´
(2)

for any FV and where ú∪ stands for the union of
sets with common elements repeated. The set

σ
³
FV | V/R∗(B,V)

´
is called the internal Þxed spec-

trum of V and σ (FV | X/hA | Bi+V) the external
Þxed spectrum of V. The internal Þxed spectrum
of V∗(B,E) correspond to the so-called invariant zeros

of (A,B,E) (see [1]), i.e.:

Z(A,B,E) := σ
³
FV∗

(B,E)
| V∗(B,E)/R∗(B,E)

´
Note that in the same way, the invariant zeros

of the systems (A,B,C), (A,

·
B
...D

¸
,E), ... are well

deÞned.
In a dual way, σ (GM | L/M) , the spectrum

of the map induced by (A+ GMC) in the quotient
space L

M is deÞned and can be decomposed (in con-
nection with the (C,A)-inv.sp. S) into Þxed and free
parts in order to get σfix(S) and the invariant zeros
of (A,B,E) can also be obtained in a dual equivalent
way:

Z(A,B,E) := σ
³
GS∗

(E,B)
| N ∗

(E,B)/S∗(E ,B)

´
(see [1]), and in the same way, the invariant zeros

of the systems (A,D,E), (A,D,

·
E
C

¸
), ... are well

deÞned.

3 Some related results on the
disturbance rejection prob-
lem.

Let us consider the continuous linear system úx (t) = Ax (t) +Bu (t) +Lm(t),
y (t) = Cx (t)
z(t) = Ex(t),

were x(t), u(t) and C(t) are deÞned as in 1, m(t)
denotes an input disturbance and z(t) the interest
output. We note L = imL, B = imB, C = kerL,
E = kerE,

If we are interested in the disturbance rejec-
tion problem, i.e., in decoupling the disturbancem(t)
at the output z(t) by static state feedback (DRSF

438



ISBN: 970-32-2137-8

      CONGRESO ANUAL DE LA AMCA 2004

problem), the necessary and sufficient condition is
very well known (see [7], [1]):

L ⊂ V∗(B,E).

If this conditions holds, then there exist a F ∈
F
³
V∗(B,E)

´
such that,

Z(s)

Q(s)
= E (sI −A−BF )−1L = 0.

A dual way to solve the Disturbance Rejec-
tion Problem is to use an output injection strategy
instead of a state feedback control, i.e., to Þnd a G
such that

Z(s)

Q(s)
= E (sI −A−GC)−1 L = 0.

This is the so called Disturbance Rejection by (sta-
tic) Output Injection (DROI). The necessary and
sufficient condition to solve this problem is

S∗(C,L) ⊂ E (3)

If this condition holds, the DROI problem can be
solved with G ∈ G(S∗(C,L)).

A different interpretation of this last result is
the following: equation (3) is the necessary and suf-
Þcient condition for the existence of an observer to
reconstruct the signal z(t) = Ex(t) when the (dis-
turbance) input m(t) is not measured (see [1]). This
interpretation of the DROI problem is very impor-
tant in order to solve the Failure Detection problem,
as we will see in the next section.

4 The Fault Detection and
Identification problem.

Consider a continuous linear time-invariant system
which includes an actuator failures model (A, B, C,£
L1 L2 · · · Ll

¤
) described by:

.
x (t) = Ax (t) +Bu (t) +

Pl
i=1 Limi (t) ,

y (t) = Cx (t)
z(t) = Ex(t),

(4)

where: mi (t) ∈ Mi ' R denotes the i-th actuator
failure mode and Li : Mi → X denotes the i-th
actuator failure signature.

Remark 1 The unknown i-th actuator failure mode
mi (t) has the following property:

mi (t) 6= 0
when the i-th actuator is failing, if it is not the case
mi (t) = 0.

We shall note

mi (t) =

= [m1 (t)
...m2 (t)

.....
...mi−1 (t)

...mi+1] (t) ...
...ml (t)]

and Li = ImLi := Σj 6=i ImLj.
The Fundamental Problem of Residual Gen-

eration (FPRG) is deÞned in the following way:

Definition 2 FPRG: Get a processor that takes
y(t) and u(t) as inputs and generates the residual
ri(t) such that this ri(t) is affected by mi(t) but not
by mi(t).

We know from Section 3 that S∗(C,L) ⊂ E is the
necessary and sufficient condition for the existence
of an observer to reconstruct the signal z(t) = Ex(t)
when the (disturbance) input m(t) is not measured
(see [1]). Then if the signal z(t) = Ex(t) is available
and the map E is such that S∗

(C,Li) ⊂ kerE, we can
build an observer providing an adequate estimated
of z(t), i.e., bz(t) = Ebx(t). and the residual ri(t) =
z(t) − bz(t) = 0 even in the case mi (t) 6= 0. If we
add the condition S∗

(C,Li) ∩ Li = 0, then r 6= 0 when
mi (t) 6= 0 This interpretation of the DROI problem
provides a Þrst solution to the FPRG as follows.

Lemma 3 Consider system (4) and the fact that the
function z(t) = Ex(t) is available. Then the FPRG
has a solution iff

S∗
(C,Li) ∩ Li = 0, (5)

where the map E is such that S∗
(C,Li) ⊂ kerE.

The details of the proof is omitted here, how-
ever, it is almost direct from the results given in Sec-
tion 3.

This result is not of a practical interest be-
cause of the Ex(t) availability restriction. However,
it allows to understand the problem and to get the
practical solution in a simple and natural way.

Note that there exist a set of Þxed poles associ-
ated to the solution S∗

(C,Li), i.e., the set σfix(S
∗
(C,Li)).

However, this set do not represent the Þxed poles of
the problem and only the Þxed poles associated to
the solution S∗

(C,Li).
In a practical situation, we are restricted

to the information contained in y(t) = Cx(t),
i.e., z(t) = Ex(t) is not available. From the
deÞnition of (kerC, A)-unobservability sub-
space N(KerC) = hKer (HC) | A+DCi :=

Ker(HC) ∩ (A+DC)
−1
Ker(HC) ∩ · · · ∩

(A+DC)−n+1Ker(HC) , we can see that if there
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exist a (kerC,A)-unobservability subspace N(KerC)

such that

Li ⊂ N(KerC)

and

N(KerC) ∩ Li = 0
then the FPRG as a solution. From the deÞnition of
N ∗

(L,K) the inÞmal (L,A)-unobservability subspace
containing a subspace K we can easily obtain the
following result and with out need of any proof.

Theorem 4 [4]Consider system (4). Then the

FPRG has a solution iff

N ∗
(C,Li) ∩ Li = 0.

Note that as S∗
(C,Li)⊂ N

∗
(C,Li), this condition

is obviously more restrictive than (5).
Then ri(t) is affected by mi(t) but not by

mi(t), with ri(t) = HCx(t)−HCbx(t) with H such
that

N ∗
(C,L) ⊂ kerHC

An important observation is that using the
subspace N ∗

(C,Li) as a geometric support for the so-
lution, they are not Þxed poles associated to the
FPRG, but the non observable set, i.e. hKerC | Ai .
This is obvious from the fact that

σfix(N ∗
(C,Li)) = σ(hC ∩ kerE | Ai) ú∪ {®)}

5 Examples

5.1 Example 1

In order to illustrate the application of the previous
result, we present now a simple example.

Consider a linear time-invariant system (A, B,
C,E, L1, L2) described by 4, with:

A =

 0 3 4
−1 −2 −3
0 2 5

 ; B =
 0
0
1

 ;
L1 =

 −3
1
0

 ; L2 =

 1
0
0


C =

·
0 1 0
0 0 1

¸
, E =

£
1 3 0

¤
We are interested in a processor that takes

y(t) and u(t) as inputs and generates a residual r(t)
affected bym2(t) but not bym1(t).It is easy to verify

that L1 = S∗(C,L1) and S∗(C,L1) ∩L2 = 0. As S∗(C,L1) =
kerE . Then conditions of Lemma 3 are satisÞed.
We can then build the observer½ búx (t) = Abx (t) +Bu (t) +GC[bx (t)− x (t)],

y (t) = Cbx (t) ,
with G ∈ S∗(C,L1). Let us consider

G =

 0 −2
−2 −1
−2 −9


It is easy to check that the residual generator r2(t) =
Ex(t)−Ebx(t) is sensitive to m2(t) but not to m1(t),
i.e.,

R2(s)

M1(s)
= 0

and
R2(s)

M2(s)
6= 0

Note that the restrictionG ∈ N ∗
(C,L1) impose the pole

s = −3, i.e., σfix(S∗(C,L1)) = {−3}.

5.2 Example 2

Let us consider the (A, B, C,E, L1, L2) system, with
matrices A,B,C,E and L1 as in Example 1 but with
L2 as follows:

L2 =

 0
0
1


It is easy to check that

N ∗
(C,L1) =

 1 0
0 1
0 0


As

N ∗
(C,L1) ∩ imL2 = 0

Then conditions of Theorem 4 are satisÞed. We can
then build the observer½ búx (t) = Abx (t) +Bu (t) +GC[bx (t)− x (t)],

y (t) = Cbx (t) ,
with G ∈ N ∗

(C,L1). Let us consider

G =

 1 −2
−2 −1
−2 −9


It is easy to check that the residual generator r2(t) =
HCx(t) − HCbx(t), with H = [ 0 1 ], is sensitive
to m2(t) but not to m1(t), i.e.,

R2(s)

M1(s)
= 0
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and
R2(s)

M2(s)
6= 0

Note that the restriction G ∈ N ∗
(C,L1) do not impose

any pole, i.e., all the poles can be freely placed in the
observer with G ∈ N ∗

(C,L1).

6 Concluding Remarks.

In this paper we has presented a new result concern-
ing the Failure Detection and IdentiÞcation Problem.
A simple necessary and sufficient condition to solve
one version of the failure detection and identiÞcation
problem was obtained. The results are stated as a
straightforward interpretation of the dual problem of
the input-output disturbance rejection problem, i.e.,
the estimation of a linear function of the state when
the input is not measured. Even if this result is not of
a practical interest, it allows to understand the prob-
lem and to obtain the practical results of Massoumia
[4] in a sample and direct way.
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